62 research outputs found

    Real-Time Safety Monitoring and Prediction for the National Airspace System

    Get PDF
    As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have both an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecasts, predicted health of assets in the airspace, and so on. To this end, we have developed a Real-Time Safety Monitoring (RTSM) that first, estimates the state of the NAS using the dynamic models. Then, given the state estimate and a probability distribution of future inputs to the NAS, the framework predicts the evolution of the NAS, i.e., the future state, and analyzes these future states to predict the occurrence of unsafe events. The entire probability distribution of airspace safety metrics is computed, not just point estimates, without significant assumptions regarding the distribution type and or parameters. We demonstrate our overall approach by predicting the occurrence of some unsafe events and show how these predictions evolve in time as flight operations progress

    Qualitative Event-Based Diagnosis: Case Study on the Second International Diagnostic Competition

    Get PDF
    We describe a diagnosis algorithm entered into the Second International Diagnostic Competition. We focus on the first diagnostic problem of the industrial track of the competition in which a diagnosis algorithm must detect, isolate, and identify faults in an electrical power distribution testbed and provide corresponding recovery recommendations. The diagnosis algorithm embodies a model-based approach, centered around qualitative event-based fault isolation. Faults produce deviations in measured values from model-predicted values. The sequence of these deviations is matched to those predicted by the model in order to isolate faults. We augment this approach with model-based fault identification, which determines fault parameters and helps to further isolate faults. We describe the diagnosis approach, provide diagnosis results from running the algorithm on provided example scenarios, and discuss the issues faced, and lessons learned, from implementing the approac

    Distributed Damage Estimation for Prognostics based on Structural Model Decomposition

    Get PDF
    Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach

    Model-Based Prognostics

    Get PDF
    This tutorial will cover the basics of model-based prognostics, and include concepts such as modeling approaches, estimation and prediction algorithms, and how uncertainty is represented and quantified. Other topics covered will include structural model decomposition, system-level prognostics, prognostics of hybrid systems, and distributed prognostics. Several case studies, such as water recovery systems to the prediction of safety margins in the national airspace system will be used to explain different concepts of prognostics and demonstrate their application to real-world systems

    Model-Based Prognostics of Hybrid Systems

    Get PDF
    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems

    A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    Get PDF
    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study

    Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    Get PDF
    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study

    Qualitative Event-Based Fault Isolation under Uncertain Observations

    Get PDF
    For many systems, automatic fault diagnosis is critical to ensuring safe and efficient operation. Fault isolation is performed by analyzing measured signals from the system, and reasoning over the system behavior to determine which faults have occurred, based on models of predicted faulty behavior. For dynamic systems, reasoning may be performed using qualitative analysis of the differences between measured signals and their predicted values, in which observations take the form of qualitative symbols. Such an approach is quick to isolate faults, but depends critically on correct generation of the qualitative symbols from the signals. In this paper, we develop an approach to qualitative event-based fault isolation for dynamic systems that is robust to incorrect qualitative observations. Observations are treated as uncertain, where multiple interpretations of an observation, each with its own probability, are considered. By interpreting observed symbols in a probabilistic manner, the approach degrades gracefully as the number of incorrectly-generated symbols increases. The approach is demonstrated on an electrical power system testbed, and experiments using real data obtained from the hardware demonstrate the improved fault isolation performance in the presence of incorrect symbol generation

    Diagnosability-Based Sensor Placement through Structural Model Decomposition

    Get PDF
    Systems health management, and in particular fault diagnosis, is important for ensuring safe, correct, and efficient operation of complex engineering systems. The performance of an online health monitoring system depends critically on the available sensors of the system. However, the set of selected sensors is subject to many constraints, such as cost and weight, and hence, these sensors must be selected judiciously. This paper presents an offline design-time sensor placement approach for complex systems. Our diagnosis method is built upon the analysis of model-based residuals, which are computed using structural model decomposition. Sensor placement in this framework manifests as a residual selection problem, and we aim to find the set of residuals that achieves single-fault diagnosability of the system, uses the minimum number of sensors, and corresponds to the best model decomposition for the best distribution of the diagnosis system. We present a set of algorithms for solving this problem and compare their performance in terms of computational complexity and optimality of solutions. We demonstrate the approach using a benchmark multi-tank system

    A Distributed Approach to System-Level Prognostics

    Get PDF
    Prognostics, which deals with predicting remaining useful life of components, subsystems, and systems, is a key technology for systems health management that leads to improved safety and reliability with reduced costs. The prognostics problem is often approached from a component-centric view. However, in most cases, it is not specifically component lifetimes that are important, but, rather, the lifetimes of the systems in which these components reside. The system-level prognostics problem can be quite difficult due to the increased scale and scope of the prognostics problem and the relative Jack of scalability and efficiency of typical prognostics approaches. In order to address these is ues, we develop a distributed solution to the system-level prognostics problem, based on the concept of structural model decomposition. The system model is decomposed into independent submodels. Independent local prognostics subproblems are then formed based on these local submodels, resul ting in a scalable, efficient, and flexible distributed approach to the system-level prognostics problem. We provide a formulation of the system-level prognostics problem and demonstrate the approach on a four-wheeled rover simulation testbed. The results show that the system-level prognostics problem can be accurately and efficiently solved in a distributed fashion
    corecore